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difficult part of creating a finite-volume scheme for MHD
is the determination of the hyperbolic fluxes at each cellA new implicit algorithm is developed for solving the time-depen-

dent, nonideal magnetohydrodynamic equations. It can also be used interface. Approximate Riemann solvers are a class of
as an efficient relaxation scheme for steady state solutions. The methods for evaluating these fluxes that take into account
algorithm is a finite-volume scheme that uses an approximate Rie- the wave nature of hyperbolic equations. In the past, ap-
mann solver for the hyperbolic fluxes and central differencing ap-

proximate Riemann solvers have been used extensively inplied on nested control volumes for the parabolic fluxes that arise
the solution of the Euler and Navier–Stokes equations infrom the non-ideal terms (i.e., resistivity and viscosity). In one di-

mension the scheme is second-order accurate in space and time. fluid dynamics. Recently, a number of explicit schemes
In two or three dimensions, the accuracy is between first and second built around some type of approximate Riemann solver
order. For the class of problems considered, the implicit formulation have been developed for the one-dimensional and multidi-
is stable for any size time step, thus allowing efficient tracking of

mensional MHD equations [1–7].slower transients. The implicit operator is inverted using a lower–
While the MHD equations can be used to study plasmaupper symmetric Gauss–Seidel iteration. Results from several test

cases are presented that show good agreement with analytical solu- phenomena occurring on time scales as short as the transit
tions and illustrate the advantages of the scheme. Q 1997 Academic time of a fast MHD wave, for many problems the important
Press physics occurs on time scales that are much longer. For

example, it can be shown that resistive tearing modes,
which are important in studying fusion plasmas, evolve on1. INTRODUCTION
a time scale given by [8]

Plasmas generally exhibit both collective (fluid) and indi-
ttearing Y t 2/5

A t 3/5
h 5 (Lu)3/5 tA , (1)vidual (particle) behavior. In the MHD (magnetohydrody-

namic) model, the plasma is treated like a conducting fluid
having macroscopic parameters that accurately describe where tA is the Alfvén time, th is the resistive diffusion
its particle-like interactions. This model is useful in many time, and Lu is the Lundquist number, which is defined as
areas of plasma physics, including fusion plasmas, space
and solar plasmas, and electric propulsion. The MHD Lu 5 th/tA . (2)
model comprises a coupled set of nonlinear partial differ-
ential equations that must be solved numerically. Time-

If Lu is 106, which is typical for laboratory plasmas independent MHD simulations are particularly challenging
fusion applications, the resistive tearing time is approxi-because of the wide range of time scales present in the
mately 4000 times larger than the Alfvén time. In this case,model. In this paper we present an implicit algorithm for
an explicit scheme would limit the time step to a muchnumerically solving the full (nonlinear, nonideal, time-de-
smaller value than is needed to accurately resolve the tran-pendent) MHD equations, which include dissipative terms
sient behavior. An implicit scheme removes the numeri-due to resistivity and viscosity.
cally imposed time-step constraint, allowing much largerMathematically, the MHD equations are a mixed set of
time steps.hyperbolic and parabolic equations. Finite-volume meth-

There have been a number of applications of implicitods are one of several different techniques available to
finite-difference methods to nonlinear multidimensionalsolve these equations. They are simple to implement, easily
MHD problems. Lindemuth and Killeen [9] and Schnackadaptable to complex geometries, and well-suited to han-
and Killeen [10] used fully implicit schemes that employeddle nonlinear phenomena such as mode coupling. The most
iterations at each time step to invert the implicit operator.
However, for large, three-dimensional problems, inverting* Alternate address is High Energy Plasma Division, Phillips Labora-

tory, Kirtland Air Force Base, New Mexico 87117-5776. the full implicit operators became impractical, so various
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semi-implicit schemes were introduced. Weber et al. [11]
used a time-split method whereby the convective terms
were solved explicitly and the diffusive terms were solved
implicitly. The MACH3 code [12] also uses a time-splitting

5 = ?3
0

(ReA)21 t̄̄

(Lu)21 Ē̄ res

(ReA)21 v ? t̄̄ 2 (Lu)21 h̄̄ ? (= 3 B) 3 B

1 (PeA)21 k̄̄ ? =T

4.scheme, but the equations are split in such a way as to
remove the Alfvén speed from the numerical stability con-
siderations. Since the equations are decoupled in these
schemes, the equations must be iterated at each time step
until they converge. Schnack et al., [13] introduced a class

The variables are density (r), velocity (v), magnetic induc-of semi-implicit schemes that used operator-splitting to
tion (B), pressure (p), energy density (e), and temperatureremove the numerical time-step restrictions. These meth-
(T). The energy density isods have the advantage of not requiring iterations, but

inaccuracies are introduced by the operator splitting that
limit the allowable time step.

e 5
p

c 2 1
1 r

v ? v
2

1
B ? B

2
, (4)

In this work we have developed a new implicit scheme
for solving the time-dependent, nonideal MHD equations.
It is among the first implicit schemes for MHD that uses where c 5 cp/cv is the ratio of the specific heats. The tensor
an approximate Riemann solver to evaluate the hyperbolic Ē̄res is defined such that
fluxes. The implicit scheme is unique in that it is based
upon a flux-vector splitting of the hyperbolic fluxes. The = ? Ē̄res 5 2= 3 (h̄̄ ? = 3 B). (5)
formulation allows the time step to be chosen based on
the time scales one wishes to resolve rather than on the The other nondimensional tensors are the stress tensor (t̄̄),
stability of the numerical method. This can be important the electrical resistivity (h̄̄), and the thermal conductivity
for problems where the time scales of interest are much (k̄̄), and I is the identity matrix. The nondimensional num-
longer than the fast MHD transit time. As long as the bers are defined as follows:
Reynolds and Lundquist numbers are much larger than
one, which is the case for most fusion and space plasmas,

Lundquist number: Lu ; eocaL/hthis method is numerically stable for any CFL number. As
with most implicit schemes, the implicit operator is solved modified Reynolds number: ReA ; caL/n (6)
iteratively at each time step. However, due to its simple

modified Péclet number: PeA ; caL/k.form in this case, it can be solved using an approximate
LU decomposition technique that is extremely efficient.

The characteristic variables are length (L), Alfvén speedIn section 2 we describe the MHD equations and their
(ca 5 B/Ïeor), kinematic viscosity (n), electrical resistivityproperties. The details of the new algorithm are presented
(h), and thermal diffusivity (k 5 k/rcp); eo is the permeabil-in section 3. Section 4 summarizes the results of several
ity of free space. Note that the characteristic speed ap-benchmark tests we performed to validate the new algo-
pearing in ReA and PeA is the Alfvén speed, rather thanrithm.
the flow velocity.

For convenience, the MHD equation set (Eq. (3)) is
rewritten in the compact form

2. MHD EQUATIONS
Q
t

1 = ? T̄̄h 5 = ? T̄̄p , (7)The three-dimensional, viscous, resistive MHD plasma
model is a set of mixed hyperbolic and parabolic equations.
When expressed in conservative, nondimensional form, the where Q is the vector of conservative variables, T̄̄h is the
equation set is tensor of hyperbolic fluxes, and T̄̄p is the tensor of parabolic

fluxes. The forms of these vectors and tensors can be seen
from Eq. (3).

3. NUMERICAL METHOD


t 3
r

rv

B

e
41 = ? 3

rv

rvv 2 BB 1 (p 1 B ? B/2)I

vB 2 Bv

(e 1 p 1 B ? B/2) v 2 (B ? v)B
4 (3) The method presented here is based on an algorithm that

has been applied to the time-dependent, incompressible
Navier–Stokes equations [14]. In one dimension the algo-
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rithm is second-order accurate in space and time. For multi-
(Rh)m11

ij P (Rh)m
ij 1

(Rh)m
ij

Q
(Qn11,m11

ij 2 Qn11,m
ij ). (13)dimensions, the accuracy is less than second order, but

greater than first order. In the following description of the
algorithm, the accuracies quoted are for one dimension. It is important to note that the partial derivatives above
We will derive the algorithm for two dimensional Cartesian are taken with respect to Q at every cell, not just Qij . The
coordinates. The extension to three dimensions and gen- partial derivative of Q/t with respect to Q is simply
eral coordinates is straightforward. To begin, we express
the MHD equations as

(Q/t)
Q

5
3I

2Dt
, (14)

Q
t

1
F
x

1
G
y

1
Fp

x
1

Gp

y
5 0, (8)

since it only varies with Qn11,m
ij . However, the partial deriv-

ative of Rh is much more difficult to evaluate. In fact, in
order to make it tractable, it is evaluated using a first-orderwhere F is the hyperbolic flux vector in the x direction
accurate approximation of the hyperbolic fluxes, which we(i.e., T̄̄h 5 (F, G, H)) and Fp is the parabolic flux vector
will denote as R̂h , rather than the full second-order accu-in the x direction (i.e., T̄̄p 5 2(Fp , Gp , Hp)). We then
rate discretization (Rh). This first-order approximation candiscretize Eq. (8) in space and time, evaluating the fluxes
be written generally asat the n 1 1 time level to get

(R̂h)ij 5 f(Qij , Qi21, j , Qi11, j , Qi, j21 , Qi, j11), (15)1
2Dt

(3Qn11
ij 2 4Qn

ij 1 Qn21
ij ) 5 2[(Rh)n11

ij 1 (Rp)n11
ij ], (9)

so that the m 1 1 iteration of (R̂h)ij is coupled to five points
from the previous iteration. Substituting these expressionswhere Rh and Rp are the discretizations of the hyperbolic
back into Eq. (9) and rearranging, we getand parabolic fluxes, respectively.

Equation (9) is implicit and must be solved iteratively.
Let Qn11,m denote the mth iteration of the solution at the F(R̂h)m

ij

Q
1

3I
2DtG DQm

ij 5 2F(Rh)m
ij 1 (Rp)m

ij 1 SQ
t Dm

ij
G,n 1 1 time level. To derive a recursive expression for the

next iteration of Qn11 in terms of the previous iteration, (16)
we rewrite Eq. (9) as

whereSQ
t Dm11

ij
5 2[(Rh)n11,m11

ij 1 (Rp)n11,m
ij ], (10)

DQm
ij ; Qn11,m11

ij 2 Qn11,m
ij . (17)

where At each time step, Eq. (16) is iterated until DQm is
driven to approximately zero, at which point the original
differential equation is approximately satisfied. The imple-SQ

t Dm11

ij
; 1

2Dt
(3Qn11,m11

ij 2 4Qn
ij 1 Qn21

ij ). (11)
mentation of this iteration depends, of course, on the de-
tails of the discretization of the hyperbolic and parabolic
fluxes (Rh and Rp) and on the linearization of the hyper-This equation is still implicit, because the time derivative
bolic fluxes (R̂h/Q). The left-hand side of Eq. (16) canand hyperbolic flux terms are evaluated at the m 1 1
be thought of as an implicit operator operating on DQm.iteration. (Evaluating the parabolic flux at the old iteration
The implicit operator is a large banded block matrix thatlevel, m, results in a significantly simpler implicit operator,
is costly to invert directly. Instead, we make a number ofas will be explained later). These terms are related to
simplifications to the operator and then invert it using thethe previous iteration by linearizing them using truncated
lower upper symmetric Gauss–Seidel (LU-SGS) techniqueTaylor series expansions. That is,
[15]. The hyperbolic fluxes are differenced by applying
Harten’s approximate Riemann solver [16] within the
framework of the multidimensional technique developedSQ

t Dm11

ij
P SQ

t Dm

ij
1

(Q/t)m
ij

Q
(Qn11,m11

ij 2 Qij
n11,m)

by Powell [4]. The parabolic fluxes are discretized using
(12) central differencing on an offset finite volume mesh. In

the following sections, each of these parts of the algorithm
are described separately in more detail.and
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3.1. Approximate Riemann Solver The zero eigenvalue arises from the fact that the j 3 B
force acts perpendicularly to the directions of j and B, so

The finite volume discretization of the hyperbolic fluxes
that the F flux vector has a zero term corresponding to

can be written as
Bx . For approximate Riemann solvers, there are basically
two approaches to solving this problem. The most common

(Rh)ij 5 Fi11/2, j 2 Fi21/2, j 1 Gi, j11/2 2 Gi, j21/2 . (18) is to drop Bx from Q when applying the Riemann solver
to the x fluxes, drop By from Q when applying it to the y

Note that in this equation, and all that follow, the grid fluxes, and so forth. That is, in each direction a different
metric terms (cell areas and volumes) are omitted for clar- seven-variable Riemann problem is solved.
ity. The fluxes at the cell faces in each direction are evalu- An alternate approach, which we are using in this work,
ated by solving a one-dimensional linear Riemann problem has been developed by Powell [4]. In this approach the
defined by the discontinuous jump in Q between each cell. Jacobians are modified in order to remove the zero eigen-
That is, if we let Ql and Qr denote the states to the left value singularity, and a source term is added that exactly
and right of a cell interface, then the x direction flux is cancels the terms introduced by the modification of the
determined by solving Jacobians. The eigenvalues of the modified Jacobian, Ã,

are
Q
t

1 A(Ql , Qr)
Q
x

5 0, (19)
l 5 (vx , vx , vx 6 cf , vx 6 cs , vx 6 ca,x)T. (26)

where A, the Jacobian of the F with respect to Q, is a Thus the modification of A has changed the zero eigen-
function of the left and right states. Similarly, a linear value to the flow speed, while keeping the others un-
Riemann problem in the y direction is solved to get the y changed. In the same way, the zero eigenvalue for the y
fluxes. There are a number of different types of approxi- flux is changed to vy . The source term, Sdiv , is given by
mate Riemann solvers that have been developed. In this
work, we did not develop a completely new Riemann
solver, but rather adapted a solver originally developed
for the Euler equations by Harten [16].

Sdiv 5 23
0

B

v

v ? B
4 = ? B. (27)To solve the linear Riemann problem defined above, we

write A as

A 5 X21 LX, (20)
It is proportional to = ? B, which is zero analytically, but
not numerically. It can be shown [4] that the artificial eighthwhere X is a matrix whose columns are the right eigenvec-
wave is associated with the convection of nonzero = ? Btors of A, X21 is its inverse (its rows are the left eigenvectors
produced by truncation errors.of A), and L is a matrix having the eigenvalues of A along

The main reason we chose the eight-variable Riemannthe diagonal. The eigenvalues of A are
solver approach is that it was simpler to incorporate into
our implicit iteration scheme. An additional benefit of thisl 5 (vx , 0, vx 6 cf, vx 6 cs , vx 6 ca,x)T, (21)
approach for the problems we have considered, is that
the formulation automatically insures that = ? B remainswhere cf and cs are the fast and slow magnetosonic speeds
approximately zero and does not grow, because any finitein the x direction, and ca,x is the Alfvén speed based on
= ? B is convected out of the domain [4]. However, itthe x component of the magnetic field. These can be ex-
should be noted that for more complicated flows havingpressed as
stagnation points and recirculation regions, this technique
would not guarantee that = ? B would remain zero every-

c2
f 5

1
2

ha2 1 c2
a 1 [(a2 1 c2

a)2 2 4a2c2
a,x]1/2j (22) where in the domain. For those types of problems, we

would likely have to solve an auxilliary equation between
time steps in order to remove any non-solenoidal compo-c2

s 5
1
2

ha2 1 c2
a 2 [(a2 1 c2

a)2 2 4a2c2
a,x]1/2j (23)

nents of the field, as is commonly done in other MHD
c2

a,x 5 B2
x/eor. (24) Riemann solvers (e.g., [3]).

With the addition of the source term, Rh becomes
Here, a is the ion acoustic speed, which for a perfect gas is

(Rh)ij 5 Fi11/2, j 2 Fi21/2, j 1 Gi, j11/2 2 Gi, j21/2 1 (Sdiv)ij .
(28)a2 5 cp/r. (25)



IMPLICIT SCHEME FOR NONIDEAL MHD 235

The fluxes are calculated by using the modified Jacobians S 5 sgn (ak
i11/2), (35)

with Harten’s scheme in the form used by Yee et al. [17].
In this form, the x direction flux at the i 1 As face is and

Fi11/2 5 As [Fi11 1 Fi] 1 As O
k

fk
i11/2rk

i11/2 , (29)
ck

i11/2 5
gk

i11 2 gk
i

ak
i11/2

. (36)

where rk is the kth right eigenvector of Ã, and fk is a
It is essentially an upwind-weighted minmod function.nonlinear dissipation term that is designed to provide just

It is important that the eigenvectors of the modifiedenough dissipation near sharp gradients to suppress numer-
Jacobians be properly normalized to ensure that they re-ical oscillations while still achieving higher order spatial
main well defined and form a complete set for variousaccuracy throughout the rest of the domain. In smooth
degenerate cases. One form of the normalized eigenvectorsregions of the solution, f is approximately zero, so that
has been published previously [18]. Here, we have used aFi11/2 2 Fi21/2 yields second-order accurate central differ-
slightly different normalization developed by Balsara andencing. However, near steep gradients and discontinuities,
Roe [19]. The details of how their normalization handlesf makes the flux approximately equal to its first-order
all the possible degenerate cases are contained in the aboveaccurate upwind form given by
reference and are not repeated here. However, for com-
pleteness, the eigenvectors in this form are shown in the ap-

Fi11/2 5 As[Fi11 1 Fi] 2As O
k

c(lk
i11/2)ak

i11/2rk
i11/2 , (30) pendix.

3.2. LU-SGS Relaxation Schemewhere
As mentioned previously, the LU-SGS scheme is based

on a simpler first-order approximation to the hyperbolicak
i11/2 5 lk

i11/2 ? (Qi11 2 Qi), (31)
fluxes, rather than on Harten’s higher order discretization
described above. The first-order approximation, denotedlk is the kth eigenvalue of Ã, lk is the kth left eigenvector
by R̂h , is actually a flux-vector splitting [20] of the hyper-of Ã, and c is the absolute value function with a smoothing
bolic fluxes. This splitting of the fluxes is closely relatedterm that adds a small amount of dissipation in order to
to Harten’s first-order upwind form. If we set « in Eq. (32)enforce the entropy condition. It is given by
to zero, then Harten’s first order flux becomes

Fi11/2 5 As FFi11 1 Fi 2 O
k

uluki11/2ak
i11/2rk

i11/2G. (37)c(z) 5 5As Fz2

«
1 «G if uzu # «

uzu if uzu . «

, (32)

Equivalently, this can also be expressed as

where « is typically set to 0.01. Note that the values at the
Fi11/2 5 As[Fi11 1 Fi 2 uAui11/2(Qi11 2 Qi)]. (38)cell interface (i 1 As) are obtained by a simple average of

the neighboring cells. It is possible to evaluate the average
state at the cell interface using a more complicated and Here,
potentially more robust averaging such as the ‘‘Roe aver-
age.’’ However, we have found in practice that simple uAu ; A1 2 A2, (39)
averaging is sufficient, except for the most extreme cases,
such as for very strong shocks. where

This full expression for f is

A6 ; X21 L6X (40)
fk

i11/2 5 gk
i 1 gk

i11 2 c(lk
i11/2 1 ck

i11/2)ak
i11/2 , (33)

and L6 is a matrix having either all positive or all negative
where eigenvalues of Ã along its diagonal.

Flux-vector splitting was developed for the Euler equa-
tions, which, for the ideal gas equation of state, have thegi 5

S
2

? max[0, min[c(lk
i11/2)uak

i11/2u, S c(lk
i21/2)ak

i21/2]], property that the flux function is a homogenous function
of degree one in Q [21] and thus can be written as(34)
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F ; AQ. (41) where rA is the maximum eigenvalue of Ã, which is simply
vx 1 cf , and rB is defined similarly. The result of this
approximation is to reduce the convergence rate of theFor the MHD equations, this property no longer holds.
relaxation because the operator is less closely coupled toHowever, in this work we have found that it is a good
the detailed wave structure of the right hand-side fluxes.enough approximation to form the basis of a relaxation
However, the reduction in work per iteration more thanscheme. That is, we say that
offsets the reduction in convergence rate. An important
point here is that the approximation to the implicit opera-F P AQ, (42)
tor does not reduce the accuracy of the solution at each
time step. As long as the scheme converges at each time

so that we can define
step, the accuracy of the solution is determined by the time
step size and the right-hand side fluxes.

F6 ; A
6

Q. (43) With this approximation,

Using this type of splitting is equivalent to evaluating uAu A1 2 A2 5 rAI, (51)
in Eq. (38) at the cell centers i and i 1 1, rather than at the
cell interface, i 1 1/2. With this change, Eq. (38) becomes so that Eq. (48) simplifies to

Fi11/2 5 As[Fi11 1 Fi 2 (uAui11Qi11 2 uAuiQi)]. (44) hDij 1 A2
i11, j 1 B2

i, j11 2 A1
i21, j 2 B1

i, j21j DQn
ij 5 2Rn

ij , (52)

However, since uAu 5 A1 2 A2, the flux simplifies to
where

Fi11/2 5 A2
i11Qi11 1 A1

i Qi 5 F2
i11 1 F1

i . (45)

Dij 5 S 3
2Dt

1 rA 1 rB) Iij. (53)
In general, R̂h can be written as

This block matrix equation can be solved in two steps using(R̂h)ij 5 (F)i11/2, j 2 (F)i21/2, j 1 (G)i, j11/2 2 (G)i, j21/2 . (46)
a forward Gauss–Seidel sweep followed by a backward
sweep. The resulting algorithm can be written as

Substituting Eq. (44) and similar expressions for Fi21/2 ,
Gi11/2, and Gi21/2 into Eq. (46), we get

hDij 2 A1
i21, j 2 B1

i, j21j hDij 1 A2
i11, j 1 B2

i, j11j
(54)

(R̂h)ij 5 F1
ij 2 F1

i21, j 1 F2
i11, j 2 F2

ij
(47)

3 DQm
ij 5 2(Dij)Rm

ij .

1 G1
ij 2 G1

i, j21 1 G2
i, j11 2 G2

ij .
The forward sweep is equivalent to inverting a lower block
diagonal matrix (the first braced term in Eq. (54)), andNext, we form R̂h/Q and substitute it into the left-
the backward sweep is equivalent to inverting an upperhand side of Eq. (16) to obtain
block diagonal matrix (second braced term in Eq. (54)).
That is, the operator has been split according to the sign
of the eigenvalues. Note that this is not a directional split-H 3I

2Dt
1 A1

ij 2 A1
i21, j 1 A2

i11, j 2 A2
ij 1 B1

ij 2 B1
i, j21

(48)
ting. The fluxes in the different directions are evaluated
simultaneously. The appeal of this scheme is that it does
not require any block matrix inversions, since the blocks1 B2

i, j11 2 B2
i, jJ3 DQn

ij 5 2Rn
ij .

along the diagonal, D, contain only diagonal elements.
Thus, a single LU-SGS iteration requires only slightly more

where all of the terms on the right-hand side of the equa- (about 10% more) computations than a single explicit time
tions have been lumped together in R. Here, B is the step. We note here that the evaluation of the parabolic
Jacobian of G. This is a block pentadiagonal matrix, and fluxes, Rp , at the old iteration level (m) in Eq. (16) was
the blocks themselves are fairly difficult to evaluate. To motivated by the desire to achieve this diagonal form, since
simplify the matrix, we approximate A6 and B6 as linearization of Rm11

p would have introduced some off-
diagonal terms. The price for this simplification is that for
low ReA or Lu, the time step may be limited by the numeri-A6 P As (Ã 6 rAI) (49)
cal stability of the parabolic terms. However, for ReA and
Lu much larger than one, the CFL number is not limitedB6 P As (B̃ 6 rBI), (50)
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vx

x
5

[(vx)i11 Aright 2 (vx)i Aleft]
(Vol)fc

(57)

and

vy

y
5

[(vy)top Atop 2 (vy)bottom Abottom]
(Vol)fc

, (58)

where (Vol)fc is the volume of the face-centered cell, Aright

is the area of its right face, and so forth. The variables at
the top and bottom faces, which are denoted by open

FIG. 1. Grid stencil for parabolic fluxes. Dashed box is the offset circles in the figure, are obtained by averaging over the
mesh used to determine flux at i 1 1/2 face. four cells surrounding each face.

4. CODE VALIDATION TESTS
by numerical stability. This simple structure also lends itself

4.1. 1D Coplanar MHD Riemann Problemwell to parallelization using domain decomposition. In ad-
dition, the relaxation scheme is highly vectorizable if we This test problem was solved to verify that Harten’s
sweep through the computational domain along lines of approximate Riemann solver worked for the MHD equa-
constant i 1 j (in 2D), so that each term along these lines tions. One-dimensional ideal MHD (variations in x only)
is independent of the others and depends only on data is described by a system of seven equations, since Bx is
that has already been updated during the current sweep. constant (in order to satisfy = ? B 5 0). The coplanar MHD

equations are obtained from the one-dimensional ideal
3.3. Parabolic Terms MHD equations by setting Bz and vz to zero, thus allowing

only planar flow and fields. This eliminates the vx 6 ca,xThe parabolic fluxes are differenced using a second-
eigenvalues, leaving a system of five equations with fiveorder accurate finite-volume scheme. The discretization of
eigenvalues. Mathematically, the Riemann problem is anthe parabolic fluxes, Rp , is given by
initial boundary value problem in which there is initially
a discontinuous jump in the data such that the left half of
the domain is at one state and the right half of the domain(Rp)ij 5 (Fp)i11/2, j 2 (Fp)i21/2, j 1 (Gp)i, j11/2 2 (Gp)i, j21/2 .
is at another state. As the solution evolves in time, shock(55)
waves and rarefaction waves form that travel at speeds
related to the wave speeds of the system. Although not

The face-centered fluxes that appear in the expression for physically realizable in plasmas, this problem is analogous
Rp are obtained by performing a flux balance on an offset, to a shock tube in hydrodynamics.
face-centered mesh. Figure 1 shows the nine-point grid For the full five-wave case, there is not a closed form
stencil for a uniformly spaced Cartesian grid. The solid analytical solution. Instead, the solution must be checked
dots show the locations of the cell centers. The solid lines by calculating generalized Riemann invariants across the
indicate the boundaries of the cell surrounding point (i, j). rarefaction waves and Rankine–Hugoniot jump conditions
The dashed lines indicate the offset mesh used to calculate across the shock waves. Since this has already been done
the parabolic flux at the i 1 As face. The faces of the offset by Brio and Wu [1] for a specific set of conditions, we
mesh are labeled top, bottom, left, and right. To illustrate used those same initial conditions in order to allow direct
how the offset mesh is used to obtain the interface flux, comparison with their published solution. The initial left
we consider as an example the second term of the Fp vector, state was p 5 1, r 5 1, and By 5 1. The initial right state
txx , which, for two dimensions, is given by was p 5 0.1, r 5 0.125, and By 5 21. The velocities were

zero and Bx was 0.75. Figure 2 shows the initial density and
transverse magnetic field distributions and their numerical

txx 5
2
3

e S2
vx

x
2

vy

yD, (56) solution after 400 time steps on an 800 point grid with a
CFL number of 0.8. Since there was no advantage to using
the implicit scheme for this problem (due to the small time
steps required for accuracy), the solution was computedwhere e is the dynamic viscosity. The derivatives at the

cell face are using a simple first-order (in time) explicit scheme given by
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FIG. 3. Geometry and boundary conditions for oblique shock test
problem.

the approximate Riemann solver in two dimensions. In
this problem v and B are initially zero in the interior of
the domain. A super-Alfvénic (M 5 3), inviscid, perfectly
conducting plasma flows in from the left and upper bound-
aries and impinges at an angle of 258 on a perfectly conduct-
ing plate that forms the bottom boundary. The incoming
flow carries with it a vertical field of By 5 0.2. The boundary
conditions for the perfectly conducting plate are vy 5 0
and By 5 0. In general, boundary conditions were imple-
mented by using a single layer of ghost cells surrounding
the computational domain. The boundaries were treated
explicitly. That is, the ghost cells were evaluated using
values from the previous iteration. So, for example, By 5
0 at the conducting plate was achieved by setting

(By)ghost cell 5 2(By)first cell . (60)

FIG. 2. Numerical solution of coplanar Riemann problem. Density Figure 4 shows the steady state solution of this problem.
and transverse magnetic field are shown initially and after solution has Contours of density and magnetic field lines are plotted.
evolved for 400 time steps.

The density contours show that an oblique shock forms,
as expected. Outside of the shock, the field is convected
in from the boundary. At the shock, the field lines bend
due to the change in direction of the flow at the shock.Qn11

ij 2 Qn
ij

Dt
5 2(Rh)n

ij . (59)

The solution clearly shows five waves formed correspond-
ing to the five eigenvalues. They are a fast rarefaction
wave, a slow shock, a contact surface moving to the right,
a slow compound wave (rarefaction and shock), and a
fast rarefaction wave moving to the left. Note that the
numerical method is able to resolve the shocks over a few
grid points without introducing numerical oscillations. The
computed solution overlaid exactly on Brio and Wu’s pub-
lished solution.

4.2. Oblique Shock

Figure 3 shows the geometry and boundary conditions
for the oblique shock test problem. This steady state prob- FIG. 4. Density contours and field lines for an M 5 3 flow impinging

on a perfectly conducting plate at an angle of 258.lem served primarily as a test of our implementation of
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FIG. 6. The Hartmann flow geometry showing the moving parallel
plates and the cross magnetic field.

FIG. 5. Logarithm of the two-norm of the energy equation residual
per cell plotted as a function of iteration number for explicit and implicit

lem geometry is shown in Fig. 6. It consists of two infinitesolutions of oblique shock problem.
parallel plates, each moving in opposite directions at veloc-
ity V0 , and with an in-plane magnetic field Bo between
them that is normal to the plates in the y direction.

We verified that the divergence was less than 10214 through- For the case with equal and opposite plate velocities, the
out the domain. Hartmann flow is described by the differential equations

This solution was obtained from the implicit scheme,
Eq. (16), with the parabolic terms and the time derivative
terms all set to zero, so that the scheme becomes

2vx

y2 2 SH2

L2D vx 5 0 (63)

(R̂h)m
ij

Q
[Qm11

ij 2 Qm
ij ] 5 2(Rh)m

ij . (61) Bx

y
5 2(Rm) vx , (64)

To determine the efficiency of the implicit scheme as a where H, the Hartmann number, is
steady state solver, the oblique shock was also solved with
the simple explicit scheme (Eq. (59)) at a CFL number of

H ;
BoL

Ïrnh
5 Ï(ReA)(Lu), (65)0.8. It is recognized that Eq. (59) is not an optimized explicit

scheme. It is used here simply to provide a rough bench-
mark for evaluating the implicit scheme. Figure 5 is a plot and Rm, the magnetic Reynolds number, is
of the logarithm of the two-norm of the average residual
of the energy equation as a function of the number of

Rm ;
eoLV

h
. (66)iterations (or time steps, in the case of the explicit scheme).

In this case, the two-norm of the average residual is

Figure 7 shows the results from a simulation with H 5

iRh,eni2 5
Ïoioj (Rh,en)2

ij

Ncells
. (62)

The implicit scheme converged to 10214 in about 150 itera-
tions, whereas the explicit scheme required about 700 time
steps (iterations). Since one implicit iteration takes only
about 10% more CPU time than one explicit time step,
the implicit scheme required roughly four times less CPU
time than the explicit scheme to converge to the steady
state solution.

4.3. Hartmann Flow

The validation of the parabolic terms consisted of FIG. 7. Hartmann flow simulation with H 5 10. Flow velocity vectors
applying the code to the Hartmann flow problem, whose and magnetic field lines are shown. The flow velocity only exists close

to the plates. The magnetic field lines are linear around the midplane.steady state solution can be solved analytically. The prob-
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current will diffuse into the domain on a slower time scale
related to the resistive diffusion time. It is assumed for the
purposes of this demonstration problem that we are only
interested in the dynamics of the field diffusion and are
willing to smear over some of the details of the faster
dynamics by advancing the solution at a large CFL number.
This problem was solved with the time-accurate implicit
scheme at a CFL number of 100. Recall that the time-
accurate implicit scheme is

FIG. 8. Geometry of the magnetic field diffusion problem.

F(Rh)m
ij

Q
1

3I
2DtG DQm

ij 5 2F(Rh)m
ij 1 (Rp)m

ij 1 SQ
t Dm

ij
G.

(68)10. Near the plates there is a boundary layer with a scale
length of L/H in which the velocity falls off rapidly to zero
and the field develops a swayed shape as it is dragged by For purposes of making a rough comparison, the problem
the fluid. In the center region of the channel the velocity was also solved at a CFL number of 1 using the first-order
is zero and the field has a uniform slope. In the limit of explicit scheme given by
small Hartmann number the boundary layer extends to
the opposite wall and a linear velocity profile develops. Qn11

ij 2 Qn
ij

Dt
5 2[(Rh)n

ij 1 (Rp)n
ij]. (69)For large Hartmann numbers, the boundary layer shrinks

to zero and the field has a uniform slope throughout the
channel. The calculated solution converged to the analyti-

Figure 9 shows the evolution of the magnetic field at acal solution to within machine roundoff errors.
Lundquist number of 100 for the two simulations. The
upper plot shows the results from the explicit scheme, while4.4. Magnetic Field Diffusion
the lower plot shows the results from the implicit scheme.

The three problems described to this point show that The diffusion of the magnetic field is captured equally
the various pieces of the algorithm work correctly and that well at the larger CFL number, as expected. The explicit
the implicit solver is an efficient relaxation scheme for simulation took 2600 time steps to advance the solution
steady problems. This next example shows the utility of to t 5 10.17, while the implicit simulation required 26 time
the scheme for unsteady problems, which is the primary steps. However, the implicit scheme required approxi-
purpose of the algorithm. The problem geometry is shown mately 30 iterations at each time step, and each iteration
in Fig. 8. In this figure, positive x is to the right, positive required about 10% more CPU time than an explicit time
y is up, and positive z is out of the page. Initially, v and step. So, in terms of CPU time, the implicit scheme ran
B are zero throughout the computational domain, which roughly three times faster than the explicit scheme for
is indicated by the thick-lined rectangle. A current sheet, this problem.
with a total current per unit z of I, is applied to the left
boundary (x 5 0). The current density is 5. SUMMARY

We presented a new implicit algorithm for solving thejy 5 2
Bz

x
. (67)

nonideal MHD equations. The algorithm is designed for
solving problems at high Lundquist and Reynolds num-
bers. For this class of problems, it is stable for any CFLThe current sheet at the left boundary is applied by setting

Bz 5 eo I in the ghost cells, so that the initial current sheet number. The algorithm features an approximate Riemann
solver for the hyperbolic terms. The approximate Riemannis represented by the jump in Bz between the ghost cell

and the first interior cell. The resulting j 3 B force acceler- solver combines Powell’s multidimensional technique with
Harten’s discretization of the hyperbolic fluxes. The para-ates the plasma in the positive x direction, so that it flows

out at the right boundary. The upper and lower boundaries bolic terms are discretized with a finite volume technique
that uses an offset, face-centered mesh to calculate theare perfectly conducting walls, whose boundary conditions

were discussed previously. There is no viscosity, so the interface fluxes. The implicit operator is inverted by using
the LU-SGS iteration.problem is one-dimensional in x.

For a Lundquist number much larger than one, the We then showed the results of several code validation
test cases. The first was a one-dimensional MHD Riemannplasma will be accelerated up to some exit velocity on a

fast hydromagnetic time scale, while the magnetic field and problem that verified that Harten’s fluxes were correctly
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MHD time scales, then one can select the time step based
on the desired accuracy, rather than on the numerical sta-
bility.

APPENDIX

In this appendix the normalized eigenvectors of the mod-
ified Jacobian, Ã, are presented. The eigenvectors for the
y direction fluxes can easily be derived from these. The
eigenvectors have a simpler form when written in terms
of the primitive variables, W, rather than the conserved
variables, Q, where

W 5 (r, vx , vy , vz , Bx , By , Bz , p)T. (70)

Therefore, we present here the eigenvectors of the primi-
tive variable Jacobian, Ãp, which is related to Ã through

Ãp 5 FQ
WG21

Ã FQ
WG. (71)

The eigenvectors are related through

rc 5 FQ
WG rp (72)

and

lc 5 lp FQ
WG21

, (73)

where p refers to the primitive variable form and c refersFIG. 9. Comparison of explicit and implicit solutions of magnetic
to the conserved variable form.field diffusion problem.

Following Roe and Balsara [19], we introduce the dimen-
sionless paramaters

implemented. The second was an oblique shock problem
a2

f 5
a2 2 c2

s

c2
f 2 c2

s
, (74)that demonstrated that the approximate Riemann solver

worked in two dimensions. It also showed that the implicit
scheme was roughly four times more efficient at relaxing

a2
s 5

c2
f 2 a2

c2
f 2 c2

s
, (75)to the steady state oblique shock solution than a particular

explicit scheme. A Hartmann flow problem was solved to
validate the resistive and viscous terms. Finally, a transient by 5

By

B'

, (76)
problem involving the diffusion of a magnetic field demon-
strated that the implicit technique could accurately track
the field diffusion while taking time steps 100 times larger bz 5

Bz

B'

, (77)
than allowed by the explicit scheme, which translated into
a factor of 3 in CPU savings when the work required for

wherethe implicit iterations was accounted for.
The chief advantage of this algorithm over an explicit

B' 5 ÏB2
y 1 B2

z . (78)approximate Riemann solver is the flexibility in choosing
the time step. That is, if one is following dynamics that are
occurring on time scales much longer than the shortest For certain degenerate cases, these parameters are indeter-



242 JONES, SHUMLAK, AND EBERHARDT

minate. For those cases, special limiting values can be de- The slow magnetosonic eigenvectors are obtained from
the above expressions by interchanging as and af and byfined, as discussed in detail in Roe and Balsara.

The eigenvalues of Ãp (and Ã) are replacing cs with cf.

l 5 (vx , vx , vx 6 cf , vx 6 cs , vx 6 ca,x)T. (79) ACKNOWLEDGMENTS
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